Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits.

نویسندگان

  • Joseph E Wedekind
  • Richard Gillilan
  • Alena Janda
  • Jolanta Krucinska
  • Jason D Salter
  • Ryan P Bennett
  • Jay Raina
  • Harold C Smith
چکیده

Human APOBEC3G (hA3G) is a cytidine deaminase that restricts human immunodeficiency virus (HIV)-1 infection in a vif (the virion infectivity factor from HIV)-dependent manner. hA3G from HIV-permissive activated CD4+ T-cells exists as an inactive, high molecular mass (HMM) complex that can be transformed in vitro into an active, low molecular mass (LMM) variant comparable with that of HIV-non-permissive CD4+ T-cells. Here we present low resolution structures of hA3G in HMM and LMM forms determined by small angle x-ray scattering and advanced shape reconstruction methods. The results show that LMM particles have an extended shape, dissimilar to known cytidine deaminases, featuring novel tail-to-tail dimerization. Shape analysis of LMM and HMM structures revealed how symmetric association of dimers could lead to minimal HMM variants. These observations imply that the disruption of cellular HMM particles may require regulation of protein-RNA, as well as protein-protein interactions, which has implications for therapeutic development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer

Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...

متن کامل

A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains.

Despite having high-resolution structures for eukaryotic large ribosomal subunits, it remained unclear how these ribonucleoprotein complexes are constructed in living cells. Nevertheless, knowing where ribosomal proteins interact with ribosomal RNA (rRNA) provides a strategic platform to investigate the connection between spatial and temporal aspects of 60S subunit biogenesis. We previously fou...

متن کامل

Biochemical differentiation of APOBEC3F and APOBEC3G proteins associated with HIV-1 life cycle.

APOBEC3G and APOBEC3F are cytidine deaminase with duplicative cytidine deaminase motifs that restrict HIV-1 replication by catalyzing C-to-U transitions on nascent viral cDNA. Despite 60% protein sequence similarity, APOBEC3F and APOBEC3G have a different target consensus sequence for editing, and importantly, APOBEC3G has 10-fold higher anti-HIV activity than APOBEC3F. Thus, APOBEC3F and APOBE...

متن کامل

Structure and assembly of turnip crinkle virus. VI. Identification of coat protein binding sites on the RNA.

Structural studies of turnip crinkle virus have been extended to include the identification of high-affinity coat protein binding sites on the RNA genome. Virus was dissociated at elevated pH and ionic strength, and a ribonucleoprotein complex (rp-complex) was isolated by chromatography on Sephacryl S-200. Genomic RNA fragments in the rp-complex, resistant to RNase A and RNase T1 digestion and ...

متن کامل

Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro.

Dissociation of turnip crinkle virus (TCV) at elevated pH and ionic strength produces free dimers of the coat protein and a ribonucleoprotein complex that contains the viral RNA, six coat-protein subunits, and the minor protein species, p80 (a covalently linked coat-protein dimer). This "rp-complex" is stable for several days in high salt at pH 8.5. Reassembly of TCV can be accomplished under p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 50  شماره 

صفحات  -

تاریخ انتشار 2006